Formulario

Legge di capitalizzazione dell'Interesse semplice (CS)

Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo.

$$M = P^*(1+i^*t)$$

$$r(0,t) = 1 + i * t$$

Montante

Montante unitario

$$P = \frac{M}{1+i*t};$$
 $i = \frac{1}{t}*(\frac{M}{P}-1);$ $t = \frac{1}{i}*(\frac{M}{P}-1)$

Formule inverse

Per trasformare il tasso d'interesse annuo i nel tasso mensile $i_{1/12}$, trimestrale $i_{1/4}$, quadrimestrale $i_{1/3}$, semestrale $i_{1/2}$ basta dividere i rispettivamente per 12, 4, 3, 2:

$$\mathbf{i}_{1/12} = \frac{i}{12}; \quad \mathbf{i}_{1/4} = \frac{i}{4}; \quad \mathbf{i}_{1/3} = \frac{i}{3}; \quad \mathbf{i}_{1/2} = \frac{i}{2}$$

in generale

$$i_{1/m} = \frac{i}{m}$$

Legge di capitalizzazione dell'Interesse composto (CC)

Il montante M è una funzione esponenziale del capitale iniziale P. Di conseguenza M cresce più che proporzionalmente rispetto al tempo.

$$M = P*(1+i)^t$$
 $r(0,t) = (1+i)^t$

Montante

Montante unitario

$$P = \frac{M}{(1+i)^t}; \qquad i = \left(\frac{M}{P}\right)^{\frac{1}{t}} - 1; \qquad t = \frac{\ln(\frac{M}{P})}{\ln(1+i)}$$

Formule inverse

Per trasformare il tasso d'interesse annuo i nel tasso mensile $i_{1/12}$, trimestrale $i_{1/4}$, quadrimestrale $i_{1/3}$, semestrale $i_{1/2}$ bisogna necessariamente utilizzare la formula dei **tassi equivalenti**:

$$\mathbf{i}_{1/12} = (1+\mathbf{i})^{1/12} - 1$$

 $\mathbf{i}_{1/2} = (1+\mathbf{i})^{1/2} - 1$

in generale

$$i_{1/m} = (1+i)^{1/m} - 1$$

Attenzione!!!!! La formula dei tassi equivalenti, utilizzabile solo in regime di capitalizzazione composta, può essere generalizzata come segue:

$$(1+i_{1/m})^m = (1+i_{1/n})^n$$

Esempio 1.

Supponiamo che il tasso annuo sia del 10% (i = 10%) e che si renda necessario calcolare il tasso semestrale $i_{1/2}$. In capitalizzazione semplice basta dividere i per 2, in capitalizzazione composta bisogna utilizzare la formula dei tassi equivalenti:

CS:
$$i_{1/2} = 10\%/2 = 5\%$$
; **CC:** $i_{1/2} = (1+10\%)^{1/2} - 1 = 4.88\%$.

Esempio inverso: supponiamo che si conosca il tasso semestrale ($i_{1/2} = 5\%$) e si renda necessario calcolare il tasso effettivo annuo *i*. In CS basta moltiplicare $i_{1/2}$ per 2, in CC bisogna utilizzare la formula dei tassi equivalenti:

CS:
$$i = 5\% * 2 = 10\%$$

CC: $i = (1+5\%)^2 - 1 = 10,25\%$

Attenzione!!!! Quando in CC si moltiplica il tasso semestrale per 2 si ottiene il **tasso nominale annuo** convertibile due volte l'anno J(2), che differisce dal tasso effettivo annuo i:

$$J(2) = i_{1/2}*2 = 5\%*2 = 10\%$$

 $J(2) = 10\% \neq i = 10.25\%$

in generale: tasso nominale annuo convertibile m volte l'anno J(m)

$$J(m) = \frac{i1/m}{1/m} = i_{1/m} * m = \frac{(1+i)^{\frac{1}{m}} - 1}{1/m}$$
$$i_{1/m} = \frac{J(m)}{m}$$

Inoltre, facendo tendere m all'infinito, J(m) può essere visto come la forza istantanea d'interesse:

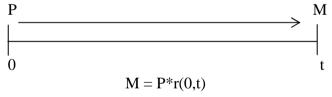
$$\lim_{m\to\infty}J(m)=\delta$$

In altri termini, la forza istantanea d'interesse può essere visto come il tasso d'interesse esigibile istante per istante. Le seguenti relazioni legano δ al tasso effettivo e al montante unitario:

$$\delta = \ln(1+i) = \ln r(0,1)$$

$$r = e^{\delta}$$
; $i = e^{\delta} - 1$

Le leggi di capitalizzazione viste finora sono state interpretate in ottica montante:



Dove r(0,t) rappresenta il valore all'epoca t di 1 euro esigibile all'epoca 0. Chiaramente l'interpretazione si può invertire. Definendo con v(0,t) il valore all'epoca 0 di 1 euro esigibile all'epoca t si ottengono le seguenti relazioni:

$$P = \frac{M}{r(0,t)} = M*v(0,t) \qquad \text{con } v(0,t) = \frac{1}{r(0,t)}$$

$$CS: v(0,t) = \frac{1}{1+ct}$$

CS:
$$v(0,t) = \frac{1}{1+i*t}$$

CC: $v(0,t) = \frac{1}{(1+i)^t} = (1+i)^{-t}$

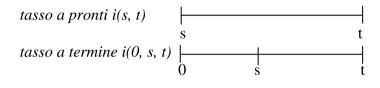


Relazioni fondamentali

	i	r	v	d
i	-	1+i	1/(1+i)	i/(1-i)
r	1+i	-	1/v	1/(1-d)
v	1/(1+i)	1/r	-	1-d
d	i/(1+i)	1/(1-d)	1-v	-

Struttura dei tassi

Quando il tasso d'interesse non è costante nel tempo (struttura piatta dei tassi d'interesse) ma presenta una struttura variabile nel tempo, si parla di **struttura dei tassi d'interesse**. Questa può essere distinta in struttura dei tassi a **pronti** e struttura dei tassi a **termine**. Nel primo caso l'epoca di contrattazione e di esigibilità coincidono, nel secondo caso, invece, sono distinte:



Conoscendo la struttura dei tassi a pronti si può calcolare la struttura dei **prezzi a pronti** v(0,1), v(0,2), ..., v(0,n):

$$v(0, s) = [1+i(0,s)]^{-s}$$

La relazione seguente lega la struttura dei prezzi a pronti e quella a termine:

$$v(0, s, t) = \frac{v(0,t)}{v(0,s)}$$

Quando la relazione precedente non vale non si è in un mercato perfetto e deterministico: per questo motivo si può identificare una strategie d'arbitraggio, attraverso cui l'investitore può ottenere un profitto attraverso la compravendita di titoli. Generalmente, una strategia d'arbitraggio può essere così riassunta:

Epoca	0	S	t
Strategia A	v(0,t)		-1
Strategia B		v(0,s,t)	+1
Strategia C	v(0,s,t)*v(0,s)	-v(0,s,t)	
Profitto	v(0,t) -	0	0
	v(0,s,t)*v(0,s)		

Valore attuale netto: VAN

Il VAN rappresenta la somma dei valori attuali di tutti I flussi di cassa di una operazione finanziaria:

$$VAN = F_0 + F_1 * v + F_2 * v^2 + ... + F_n * v^n = F_0 + \sum_{s=1}^n F_s * v^s$$

Il VAN è una funzione decrescente del tasso d'interesse: maggiore è il tasso applicato minore sarà il VAN. Il tasso che annulla il VAN prende il nome di Tir (Tasso Interno di Rendimento).

$$F_0+F_1*(1+Tir)^{-1}+F_2*(1+Tir)^{-2}+...+F_n*(1+Tir)^{-n}=0$$

Duration: D

La Duration è un indice temporale di variabilità. Rappresenta l'epoca ottima di smobilizzo:

$$D = \frac{\sum_{s=1}^{n} s * F s * v^{s}}{\sum_{s=1}^{n} F s * v^{s}}$$

Oltre alla Duration esistono altri indici di variabilità come la Volatility V e la Convexity C:

Vol =
$$\frac{1}{1+i} * D$$
; $C = \frac{\sum_{s=1}^{n} s*(s+1)*Fs*v^{s}}{\sum_{s=1}^{n} Fs*v^{s}} * \frac{1}{1+i}$

Rendite

Una rendita rappresenta l'insieme dei flussi di cassa di una operazione finanziaria. Di particolare importanza è il valore capitale V_t della rendita, cioè, la somma dei flussi di cassa riportati finanziariamente tutti alla stessa epoca:

$$Vt = \sum_{s=0}^{t} Rs * r(s,t) + \sum_{s=t+1}^{n} Rs * v(t,s)$$

In particolare, ponendo t = 0 si ottiene il Valore Attuale della rendita (VA); ponendo t = n si ottiene il Valore Futuro della rendita (VF): $t = 0 \Rightarrow$ Valore capitale = valore attuale = VA

$$VA = \sum_{s=0}^{n} Rs * v(0, s)$$

t = n => Valore capitale = valore futuro = VF

$$VF = \sum_{s=0}^{n} Rs * r(s, n)$$

rendite caratterizzano Le si secondo alcune particolarità. In particolare: la rata può essere costante o variabile, anticipata o posticipata a seconda che essa venga pagata all'inizio del periodo o alla fine. Inoltre la rendita può essere immediata (quando l'epoca di contrattazione e quella di esigibilità coincidono) o differita (quando l'epoca di contrattazione e quella di esigibilità non coincidono). Infine, la rendita può essere temporanea (quando il numero di rate è finito) o perpetuo (quando il numero di rate è infinito). Di seguito una serie di relazioni per il calcolo del VA e del VF di alcune delle più importanti e utilizzate rendite a rata costante.

Rendita immediata, temporanea, posticipata

$$VA = R^* \frac{1 - (1+i)^{-n}}{i} = R^* a_{n/i}$$

$$VF = R*\frac{(1+i)^n-1}{i} = R*s_{n/i}$$

Rendita immediata, temporanea, anticipata

$$VA = R^* \frac{1 - (1+i)^{-n}}{i} * (1+i) = R^* a_{n/i} * (1+i)$$

$$VF = R^* \frac{(1+i)^{n-1}}{i} * (1+i) = R^* s_{n/i}$$

Rendite immediate perpetue

$$VA = R/i$$
 posticipata $VA = R/d$ anticipata 1.

Attenzione!!!! Per le rendite perpetue non si può calcolare il valore futuro in quanto questa tipologia di rendita non possiede l'epoca di scadenza!!!!

Rendite differite

Per calcolare il valore attuale di una rendita differita di h periodi, qualsiasi essa sia, basta moltiplicare il valore attuale della rendita immediata per $v^h = (1+i)^h$.

Rendite in progressione geometrica

$$VA = R^*v^* \frac{1 - (q * v)^n}{1 - q * v}$$
 temporanea
$$VA = R^*V^* \frac{1}{1 - q * v}$$
 perpetua

Rendite progressione aritmetica

$$VA = R^* \ Ia_{n/i} = R^* \frac{\frac{an}{i}*(1+i)-n*v^n}{i}$$

Ammortamenti

Un ammortamento è la *modalità operativa* con cui si esplicita un'operazione finanziaria che intercorre tra due soggetti, il mutuante -colui che concede il prestito, e il mutuatario –colui che prende la somma mutuata in prestito. Il contratto sottostante il piano di ammortamento consiste dunque nello scambio della somma A (che può essere una somma in denaro o la proprietà di un dato bene) in cambio di una serie di rate R, costanti o variabili, che comprendono la restituzione integrale della somma A più il pagamento degli interessi. Se la durata dell'ammortamento è di n periodi unitari (anni, semestri, etc.) per assicurare l'equilibrio finanziario deve risultare

$$A = \sum_{s=1}^{n} R_s \cdot v(0, s)$$

Se il piano di ammortamento è calcolato in regime di interesse composto a tassi costanti, la relazione precedente diviene:

$$A = \sum_{s=1}^{n} R_s \cdot v^s$$

La rata è comprensiva di una parte dovuta per la restituzione del capitale mutuato (quota capitale, C_s) e una parte dovuta per il pagamento degli interessi sul capitale mutuato e non ancora restituito (quota interessi, I_s):

$$R_s = C_s + I_s$$

E' ovvio che, sommando tutte le quote capitali pagate, si deve ottenere esattamente la somma mutuata:

$$A = \sum_{s=1}^{n} C_{s}$$

Se analizziamo il piano di ammortamento ad una generica epoca $h \in (0,n)$, possiamo calcolare la somma delle quote capitali pagate fino a tale epoca,

$$D_h^e = \sum_{s=1}^h C_s,$$

ovvero il debito estinto quote capitali ancora da restituire: il debito residuo

$$D_h^r = \sum_{i=1}^n C_{s}$$

 $D_h^r = \sum_{s=h+1}^n C_s$. E' ovvio che la somma del all'epoca h debito residuo e del debito estinto relativo ad una

qualsiasi epoca $h \in [0,n]$, deve essere sempre pari alla somma mutuata A.

Si è detto che la quota interessi rappresenta il pagamento per l'utilizzo del capitale mutuato, dunque va calcolato sul capitale ancora da restituire. Per quanto detto sul debito residuo possiamo scrivere:

 $I_h = D_{h-1}^r \cdot i$ Possiamo sintetizzare quanto detto nella **Errore.** L'origine riferimento non è stata trovata.

t	R_t	C_t	I_t	D_t^{r}	D_t^{e}
0				\boldsymbol{A}	0
1	R_1	C_1	$i\cdot D_o^{r}$	A - C_1	C_1
:	:	:	:	:	:
h	R_h	C_h	$i\cdot D_{h-1}^{r}$	$\sum_{s=h+1}^{n} C_{s}$	$\sum_{s=1}^{h} C_{s}$
:	:	:	:	:	:
<i>n</i> -1	R_{n-1}	C_{n-1}	$i \cdot D_{n-2}^r$	$\sum_{s=n-1}^{n} C_{s}$	$\sum_{s=1}^{n-1} C_s$
n	R_n	C_n	$i \cdot D_{n-1}^{r}$	0	$\sum_{s=1}^{n} C_s = A$

Di seguito una serie di relazioni fondamentali per alcune caratteristiche tipologie di ammortamento.

$$VA = \sum_{s=1}^{n} Rs * v(0,s)$$

$$R_t = C_t + I_t;$$
 $I_t = i\% * DR_{t-1}$

$$DR_t = \sum_{s=t+1}^{n} Cs$$
 o $DR_t = \sum_{s=t+1}^{n} Rs * (1+i)^{-(s-t)} = \sum_{s=t+1}^{n} Rs * v(t,s)$

Ammortamento a rate costanti (francese)

$$DR_t = \sum_{s=t+1}^{n} Rs * v(t,s) = R^* \sum_{s=t+1}^{n} v(t,s) = R^* a_{n-t/1}$$

$$VA = DR_0 = \sum_{s=1}^{n} Rs * v(t, s) = R*\sum_{s=1}^{n} v(t, s) = R*a_{n/1}$$

$$R = A/a_{n/I}; \quad I_t = i\% * DR_{t\text{--}1}; \quad C_t = R \text{ - } I_t$$

$$\begin{split} C_t &= C_{t\text{-}1} * (1 + i); \ C_t = C_{t\text{-}2} * (1 + i)^2; \ C_t = C_{t\text{-}h} * (1 + i)^h \ => \\ (1 + i)^h &= \frac{ct}{ct - h} \quad => \ i = \left(\frac{ct}{ct - h}\right)^{-\left(\frac{1}{h}\right)} - 1 \end{split}$$

Ammortamento a quota capitale costante (italiano)

$$DR_t = \sum_{s=t+1}^n Rs * v(t,s)$$

$$VA = DR_0 = \sum_{s=1}^{n} Rs * v(t, s)$$

$$C=A/n; \hspace{0.5cm} I_t=i\%*DR_{t\text{-}1}; \hspace{0.5cm} R_t=C_t+I_t$$